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NUCLEATION AND CLUSTER GSROWTH IN SMALL CAVITIES
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1. Introduction

Most of the well ‘known thecories of nucleation and cluster growth
deal with a cluster size distribution where the space coordina-—,
tes of the clusters are neglected. Such a mean cluster distribu-—
tion, f(n,t), n being the cluster size, involves the appropriate
information of the phase transition in systems, where mxn:mnnm
processes (e.g. via diffusion) proceed much more faster than the
process of cluster formation and growth /1,2/. This situation of
a well mixed system is realized e.qg. in gases and simple
liquids.

Finite size effects in such w<mﬂm3m. which are mUﬂmw:mn from
a conservation of the total particle number, result in a glgbal
depletion of free particles during the 'phase transition. This
effect leads to a three step scenario of the phase transition,
consisting of (1) nucleation, (2) simultanious growth of clu-—
sters, (3) Ostwald ripening, which has been widely discussed in
previous papers (see e.g. /3/ and references therein).

A quite different situation is given in systems where the
characteristic time scale of nucleation is of the same order as
the relaxation time of the imbedding matrix, e.g. in glass
forming melts /4/. Here local effects, say the local supersatura-
tion, play the important role, because long range arder relaxa-
tions mostly are impossible because of elastic strains /5/ and
small diffusion coefficients. Gince the system is spatially
highly inhomogensous, the appropriate cluster distribution is
given by fin(r),t}, where the cluster size depends on the space
coordinate r.

The box model give us a quite simple model to wrnucnm the
space dependence of the phase transition. We will discuss here

two cases:

33




(i) The boxes act as a grid which divides the system volume V
into a number of small subvolumes v(i), where the index i gives
us the space coordinate of the box. In this way we have a
discrete space division. Long range order exchanges are now
considered by means of coupling parameters between the subvolu-
mes. ~— This model allows us e.q. the investigation of diffusion
zones in the vicinity of the clusters.

(ii) Moreover, the nature creates also real box systems, e.g.
the pores in ceolithes or the cavities in geles. These pores,
cavities are conneted by small tunnels or passages, which allow
a diffusion of particles /6/. The diameter of such cells ranges
between 5 and 80 nm; 10= to 104 particles are included in one
cell /7/. That means, we have here a realization of the former
discussed /2,3,8/ small system, but it is not closed, but
connected with the neighboring small systems.

The first stage of the phase transition, nucleation, in such
small cavities is mainly governed by the conditions
(supersaturation) in the box, whereas the further stages, growth
of clusters, result from the diffusion of free particles From
neighboring boxes /9/.

The basic ideas developed in the following describe both cases
from an uniform point of view, where a number of special cases

can be easily derived from.

2. Model of Interacting Boxes

We discuss now a system with the volume V which is divided into =z
small subvelumes V* characterizing the box volume. The boxes are
distinguished by an index i = 1, 2,..., Z.

In the system a phase transition occurs, characterized by the

reaction betweem two kinds X and Y

X {=s====% Y . (2.1)
{(free particles) ka (bound particles)

The values of X and Y differ from box to box and depend on time,

therefore we introduce the state vectors:

X(E) = £X2(E) (X2 (t) youn  Xa(£) yuun,Xa (£)2
YOt = D¥2(t) ,Yalt) joee Yalt) 4uen,Yu (83 (2.2
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Further, we assume that the kind X can diffuse, whereas the kind
Y in every box is concentrated in only one cluster of size N,
which cannot move. The total particle number N, of box j, is now
given by the number of free particles, Nijy, and the cluster of

size ny. Equivalent to (2.2) we have the space-dependent distri-

butions:
NMaf€t) = {Npis () Naz(E) uue Nag () 000 Ny (£) 3
n (£) = {ny (B),na (B)yeeayny (B) g0 yne (£23 (2.3)

Because of diffusion interaction between the boxes yields:
Ny = Nyg + ny £ const. (2.4)

but for a fixed total particle number of the system we obtain:

4 z ’
m Ny = % fNais + Nyl = Nege = const. (2.5

3. Stochastic Description of Nucleation and Diffusion -~ the

Multivariate Master Equation

In the framework of a stochastic description we discuss the
probability P(Ns,n,,t), to find a aw<mr space~ and time depen-—
dent distribution of free particles and clusters in the box
system. The change of F(Ns,ns,t) is given by the multivariate
master equation /10/. With respect to reaction (2.1) and for a

non—-diffusing component Y this equation reads:

8 P(X,Y, )
|||||||||| = % { deg(Xat1) POXa+1,X,~1,X%,Y, )
3t ivi Gi#i) ~ dy4(%s) FX,Y 803
+ 3 € Ky (Ya#1) P(Xa—1,Y+1,X", Y™ t)
I+ kX +1) P(Xa+1,Y,—1,%" 9% 1¢)
~ Lky(¥a) + kal X331 PIX, ¥ 63 3 (3.1)

The values X*,Y" denotes those elements of the vectors (2.2)
which have not changed, the changed elements are explicitely
written down.

The Ffirst term of eq. (3.1) expresses the change of free
particles due to diffusion processes to/from neighboring boxes
with a transition rate dis(Nis) between the boxes i and j. It

vields dis = 0 for non—adjecting boxes.
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The second term of eq. (3.1) considers the changes of the
free and bound particles due to reaction (2.1), where the
transition rates k depend on the actual values of X and Y.

In order tc make now assuptions for the transition rates, we
suppoze, that the formation and growth or the diminition of the
clusters explicitely depend on the conditions inside the box
only. In this way we choose the tranmsition rates for the cluster

growth and shrinkage in a former proved form /2,3/:

WNg s~1,n3+1INgy,n4) = X NsZ = Npy/V* = W™ (N1 ) (Z.2)
WiNy s+1yns—1INgsy,ny) = x N327F No(ng) /V* = Wa™ (N 4) (3.3
The transition probability of cluster growth (3.2 increases

with the cluster surface and with the density of free particles
inside the box. The parameter o characterizes the time scale of
the implementation of particles into the cluster, it depends
on the surface tension and the sticking coefficient.

The transition probability of cluster shrinkage (3.3 is
again proportional to the cluster surface and depends on the
equilibrium concentration of free particles above the curvated
cluster surface, Ng(ny)/V*. This value depends on the cluster
size and the saturation concentration Ceq(T) via /8/:

[\ 2B

- Cwg (T) exp M!ﬂlqjulu\uv (3.4)
3 kn

where B is a constant with respect to the surface ﬁmnmwonr

Additional to eq. (3.2) it holds for the creation of dimersj
WiNy 5—2,2 N3 4,0 = o Niy(Nyy—-1) / V™ (3.5

The transition probabilities of diffusion of free particles are

chosen in analogy to refs /11, 12/ as:

WiNy s—1IN15) = Zm Diym Znu\tk\m Wp— (Mg 4) (3.6)
WiNy 4 +1IN1s) = Em Dms ZuSAK\\
= WpT{Ni1y) = Zam EUWnZuBV (3.7)

Dyss 1is the coupling constant between the boxes. It yields:
Dms = Dym for adiecting boxes (Index m)
Dyas = O for non-adjecting boxes (3.8

The coupling constant is related to Fick’'s diffusion coefficient
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De via Dyy = De/1% , where 1 is the characteristic length of
the system, e.g. the box diameter.

We use further the abbreviations:
alng) = o N2 3/Y*; dyg = Dy /9™ (3.9

and for dy s not explicitely depending on space, also dis = d.
The transition rates for the change of free particles in box i

are now composed from two parts:

WMy s+1 1Ny 4) = W (N1y) = W™ + Wp™

= ai{ny) Nol(ns) + Zm dms Nam (3.10)
WiNy4—=1 INy3) = W-(N3yy) = W™ + Wop™
= Nagy { @atnyd) + Zp dum ¥ (3.11)

It depends on the ratio of the two kinetic prefactors a(n,) '~ and
dya whether the reaction or the diffusion processes will gover
the kinetics of cluster formation (reaction or diffusion limited

cluster growth) and thereby the cluster distribution.

4. Deterministic Pescription of_ the Distributions

The deterministic equations for the vectors (2.3), N, and n,

agree with the mean values equations which can be derived From

P(Nisn,t) by means of the relation:

KNas(E)> = § Nay PNs,n,t) (4.1)
IN.2

which results with the master equation (3.1) in /13/3:
||||||| = F AwNes < We(Ngg) > 4.2)
k

where k = {+,-} and As= +1, A= -1 (dimer decay A= +2, dimer
creation A= -2). By means of the transition probabilities

(3.10), (3.11) we obtain:
Aznuv = {asNo(ny?+Im dmaNam = Nasfa(ns) +Zm dimd> 4.3

or, with respect to eq. (4.4):

A
=1
L
W
It

CWm™ (N3 5}~ W™ (N1 s> = <alns){Nyis— No(nis)i?> (4.4)

Nya® = = €Ns® + Zm Oam <Nim— Nps> (4.5)
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Eqg. (4.5) means a system of equations for j = 1,...,2. If the
total particle number of the system is conserved, it follows

from (2.5):

Ulchel

. N.
CNas» = — F <nav (4. 6)

i=1 J

and therefore for the diffusion:

Gam “Maim— Nps» = O 4.7)
1

i b

[ SRR

J

In order to compare the results for the deterministic eguations
of cluster growth in box systems with the known equations
derived for well mixed systems /3/, we turn to a continuous
description of space, that means <nsr = n(r) and {Nis> = Ni(r),

and introduce the Radius of the assumed spherical cluster by
R=(r) = n{r)/(4vcs/3) {4.8)

By means of

||||| nTIIS(r) = ——— i do = ———— (4.9)

do being the capillary length, o the surface tension and ce the
density of the cluster, eq. (4.4) now reads as follows:
X Coug (T) Ny (r) do

R(r) = - exp  ——om 4. 10)
(ATea/3) 175 | caq V= Rir)

After using power expansions and introducing the nWwﬂwnmy radius
by
R

STt =do /In L Na by oo, Ve (4.11)
we arrive finally at the deterministic growth equation

- Ty d 1 1
Rir,6) = « -22 2 - (4.12)
(4mCa/3) 27 | Rep (Fat) - R(r,t)

Eqg. (4.12) formally agrees with the known deterministic kinetics
of gaseous systems /2/. But now the cluster size, R{r), depends
on the space coordinate, and the critical radius, Re~(r), too.
That means, we have no _global value of Re~, which acts as a

selection parameter for all clusters — but only a local selec—
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tion. It depends on the lgcal conditions (density of free
particles inside the box and diffusion interaction with the
surroundings) if R(r) is larger or smaller than the critical’
radius Re-(r) at the same point, if the cluster can grows
further or not.

On  the other hand, the time amnmznmsﬁ change of Re~(r,t) is
connected with the change of free particles N, (r) by:

d 1n Np(r,t) do d 1n Re.(r,t)
= = mmm D 4.13)

With respect to eq. (4.5) this means, that Re.~(t) depends both
on the time scales of reaction and of diffusion, expressed by
and d. According to wether « or d dominates, we expect a quite

different behaviour of the critical radius.

5. Evaluation of Stationary States

In order to evaluate stationary solutions of egqg. (4.5, we
introduce first the potentials V and ¥ by assuming the evolution

of the values n, and N4y as a aonwoz.wz a potential mountain:

d 3 VINa1g)

= KAg> = ——————— = F{Ngsyyny) (5. 1)
dt 9 Nyg :
d & wilN,) 8 V(N1g4)

—— KNy 4> = ~ = - + T dymiNam— Ngs> (5.2)
dt é Nags 9 Nag m

f(Ny g4n4) is the reaction function with the related potential
V(N3 4} with respect to box j.

v{Ni) is the Landau—-Binzburg funktional with respect to the

whole system. For continous variables it has the known form /12/:

r 1 -
v ki)l = h dr [ Vix(r)> + m D (w)= 1] : C5.3)

In the considered case of a discrete box system we get with the

additional factor (1/2) for the sum over j and with dss= dgi= d:
WiNy) = T4 V(Nas) + (1/4) d FTm <Naim~Nis>Z 1 (5.4

The stationary states, expressed by the vector Ni,™t*®t are obtai-
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ned from a variational derivation of YN . If the restrictive
condition (4.6) holds, we need additionally a Lagrange parameter

%y which result in the system of equations:

If no particle conservation holds, every derivation Y (N1) /3N, 4
must vanish indepenently. Let us discuss now these two cases in
detail.

(i) No particle conservation holds

For this case we receive from BYW(N3) /38Ny, = O3
N3t = d Em Nam— Npy> H J = lyui.,z (5.6

That means that the cluster growth or shrinkage is in balance
with the diffusion of free particles to/from the box.

A special solution of eq. (5.6) is given by <n,»> = 0, that
means  an  equilibrium state of the cluster, expressed by the

condition:
N3 s=%®%= N,{(ny) = Caa (T} V* exp {2B/IknT n, 2’33 (5.7)

From the condition Amuv = 0 results because of eq. (5.6)
directly, that the same number of free particles is in all
boxes. That means, we have here the homogenegus case, where in
all boxes the cluster has the size n,=tet 3znd the particle

number is N, =tet (5 7).,

Moreover, also inhomogeneous stationary solutions should
exist, where the situation in the boxes is different. From eq.

(4.5) results:

Ny mtos No(ng) + [d/a(ns)l 3, Ny, =vex
24 =

= (5.8)
1 + mld/a(n, )}

In the limit d -> 0 we receive the hohogeneous solution again,
that means, diffusion is the reason for the possibility of

inhomogeneous stationary states.

(ii) Particle conservation holds

For this case we must solve the system of equations (S.95). We

%0

get first:

{ns> = d Zm <Nam— Nis> + & = O3 J = 1yea.y2 (5.9
Summing over all equations, for the Lagrange parameter results:

1 =z - 1 =z -
AE - = B ny> = = F <Nyis> (5.10)
z j=1 z j=1
This sum define us a mean value, indicated by "x"3; that means, 2
give us the mean velocity of cluster growth or the mean velocity

of the free particles changes:

r = - :L: = :bn: ) (5.11)
In the considered case the stationary states instead of an

(4.12) result from the system of equations:

<ha> - d T Nam = Nag> = "n" = = "Ny"; j = 1,..,2 (5.12)
The special solution of eq. (3.12), which supposes all <n,> = 0,
coincides with the homogeneous solution (5.8). The inhomoge-
neous solutions, if existing, are now given by: .
No(ng) + [d/atns)) { Em Nyp=tee— upy,n 3

N, ymteat = (5.13)
1 + mld/ainy}]

where =z~= gives an addition nUCDH»:m between the equations.

6. Numerical Simulations and Discussion

Finally we want to evaluate the time— and space—~dependent clu-
ster distribution of ﬂjm.UOx system numerically. Therefore we
discuss a linear system of 50 boxes forming & ring, that means,
box "1" and box "S0" are neighbours., The ﬁmﬁmw number of
particles is conserved to S5000. )

Initially in every box Nyy = N. = 100. free particles (no
clusters) are included. The initial supersaturation is given by
Y = N1a/No = 5. We assume now, that during the first time step
nucleation occurs, wich is governed only by the >n03uwﬂw03m
inside the box. For the given constraints, the critical cluster
size for the closed box is calculated as 15 particles (cluster

radius R = 0.6975 nm); the stable cluster size of the closed
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box, which results from the depletion of free particles, remains

46 particles (cluster radius R = 1.013 am).
In order to make proper assumptions about the initial cluster

distribution, a Baussian-like distribution around the critical

cluster size is presumed. From this distribution %0

S cluster

sizes are ramdomly chosen with respect to their frequency f

(see Fig. 1). If £ is smaller than 1 the clusters sizes are

neglected (that means size 0). But, as to be seen in Fig. 1,

this is the case only for clusters smaller than ? and

larger
than 21 particles.
f€nd A
z{nl . o
10 - - R g
5t R S .
ol- o P
111 P11

20 30
) cluster size n
Fig. 1: Gaussian—like cluster distribution f(n) around the

critical cluster size (n = 15) and Wm:aoaw<. chosen

initial cluster z(n) distribution after nucleation

period

For times t > 1 d/a (where d characterizes the time scale of the

diffusion and & the time scale of the reaction) a coupling

between the boxes exists via diffusion; that means the further

growth of clusters can occur also at the expense of the neighbou-

ring boxes. We have now to solve numerically the whole system of

reaction—diffusion equations (4.4), (4.5).

Different time steps of the evolution of the space— and time

dependent cluster size distribution are presented below in terms

of the cluster radius and the critical radius of the different
boxes.

Fig. 2a gives the cluster radius and the critical radius

inside the closed boxes after the nucleation period.
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Fig. 2a: Cluster radius R(Jj) and critical radius mn1AuVﬁ1¢

versus box number for t = 1 time step (d/a)

The following snapshots show the evolution with time (see Figs.

2b-e).

‘ The evolution of the time— and space—dependent cluster distri-

bution leads to the ﬁnHHOZw:u,nO:nucmwosmn

i) muw03ﬂ~< subcritical clusters (e.g. with 13 particles, com—
pared to the critical cluster size of 135) are able to grow
to a supercritical size, if the diffusion from the neighbou-
ring boxes is large m:o:uj.ﬁu decrease the 1local critical

radius by an influx of free particles.

Ror (i3 B m.. i
RCjHD N . ;
2.0 l.“....-.... .............
(nm) . .
- ” ;
b PR 2ol . Rl

.

0.0F0--00- - 2-¢ .o.ooo?m¢ -e .oo.oﬂ.vv.??v. 4304 .33_&1
| I | —t — . . . . .

o i0 20 30 40 mc.
' box j

Fig. 2 bz ... for t = 5 time steps
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Fig. 2 e: ... for t = 3000 time steps
Fig. 2 c: ... for t = 100 time steps
(iii) The influence of local effects increases if the diffusion

Rer ) T —r—— T r—r—r————— e i wm much slower than the reaction. On the other hand, for
RCjI .me/fii\W\\?flr. : ?///{V\\\?fri,. fast diffusion the competition vwonmmw between the nucwwmwm
(nm3 2.0 lJ ....... SRR m.. .M..m.\... I = results “only" from a global depeltion of free particles
”“ : : /f*“ m m, (Ostwald ripening) and the known results are obtained.
. i . *. * v (iv) As to be seen in Figs. 2c-e, in the late stage of cluster

growth the radii of all growing clusters have the values of
their local critical radius. The difference is positive,
but rather small, this leads to a very small growth veloci-—
1 ty and therefore to a very long stage of Ostwald ripening.

DD e -0t - 2o -200047 9 - ¢ 00 0D 00 -000 - 44000 00005 ]
Jo J

NP SR SIPIEEN N AT ErEE A

{(v) Because of R(r) % Rer(r), we have practically a _competition

4] 10 20 30 40 S0 between the different critical radii. But the winner is, as

box j

before, not always determined by the largest Reri(r), it
depends on the width and the gradient of the diffusion zone
Fig. 2 d: ... for t = 1000 time steps around the largest clusters. If such diffusion zones over—

lapp, the included cluster shrinks rather fast.

(ii) The growth of clusters over large time intervalls depends For example, in Fig. 3 we see clearly two diffusion zones
strongly on the cluster distribution in the surroundings with the centres at the minima (box 14 and 34). The maxima
(local competition effect). A consideration of the space are characterized by other clusters, which become subcriti-—
dependence shows, that in general the initially largest clu- cal. In the given example, at time step 4000 in box 20 a
ster will not surely superior to the others (as to be seen cluster is located, which has to disappear in order to
e.g. in box 34 and 45, comparing time step 5 with time step "produce” free particles for the diffusion towards the
100} .

gradient of free particles. At time step 6000, the width
and the depth of the diffusion pots has been increased -

and now the cluster in box 25 must disappear - and so on.
i
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Fig. Z: Distribution of free particles vs. box number j

for two different time steps

We can conclude that the box model this

indeed, the study of nucleation and cluster growth in

presented in paper

allows us,

systems where the space-dependence of diffusion processes are of

relevance. The investigation of diffusion zones in the vicinity

of clusters is as possible as the estimation of the time— and
space—dependence of the cluster distribution in systems of

cavities.

small

The author

is indebted to L. Schimansky—-Beier and H. Malchow,

Berlin, for stimulating discussions.

References

1. A.C.Zettlemoyer (Ed.), Nucleation, New York 1969, Nuclea-
tion Phenomena, Adv. Colloid Interface Sci.Z7 (1977)

2. F.Schweitzer, L.Schimansky-Geier, W.Ebeling, H.Ulbricht,

Fhysica A 100 (1988) 261-278, A 1353 (1988) 573-591
3. H.Ulbricht, J.Schmelzer, R.Mahnke, F.Schweitzer; Thermodyna-
mics of Finite Systems and the Kinetics of First-DOrder Fhase

Transitions, Teubner, Leipzig 1788

%6

10.

11.

12.

13.

L.L. Hench, S5.W. Freiman (Eds.):; Advances in Nucleation and
Crystallization in Glasses, Columbus OH 19271

J. Schmelzer,
(1990) S05~320
R. Réachel, F.
(1978) 563

1.  Butzow, R. Pascova, J. Crystal Growth 104 .

Lefaucheux, A.C. Robert, J. Cromatogr. 1

o~

J. Dumas, J. Gauthier, J. Serughetti, J.F.

J. Material Sci. Lett. 4 (1985) 1089

Quinson,

F.Schweitzer,

119 (1987) 67;

L.Schimansky-Geier, J. Colloid Interface Sci.

J. Schmelzer, F.
(1990) 565-574

Schweitzer, Z.phys.Chemie (Leipzig) 271

P.Andreazza, F. Leufaucheux, B.
Growth 22 (1988) 415-422
Handbook of
Heidelberg—-New York 1284
W. Ebeling,

Mutaftschiev, J. Crystal

Stochastic

C.W.Bardiner, Berlin—

Methods,

Strukturbildung bei irreversiblen FProzessen,
Teubner , Leipzig 1976

H. Malchow, L. mnrwamimx<lmmwm1m Noise and Diffusion in
Bistable Noneguilibrium Systems, qm:UJmT. Leipzig 1985

W. Ebeling, R. Feistel; FPhysik der Selbstorganisation und

Evolution, Akademie—-Verlag, Berlin 1282

L&




